
A Practical Exploration of Ontology

Interoperability

Simon Polovina, James Cooke and Jeremy Loke

Cultural, Communication & Computing Research Centre (CCRC)
Sheffield Hallam University, Sheffield, United Kingdom

{s.polovina,j.loke}@shu.ac.uk,jcooke3@hera.shu.ac.uk

Abstract. ISO Common Logic (CL, ISO/IEC 24707:2007) offers the
Semantic Web (SW) a new and powerful dimension in achieving the ef-
fective discovery, automation, integration, and reuse across applications,
data and knowledge. The paper shows how it is possible to explore such
interoperability through small scale exemplar projects. As Conceptual
Graphs (CG) is a key technology in CL, we focused on the Amine CG
software and for the SW we focused on the Protégé OWL software, ex-
ploring the possible mappings between ontologies captured in OWL and
in Amine. Through this practical exercise the dimensions and extent
of the desired interoperability could be demonstrated. This small but
significant experiment provided a practical insight into how CG Tools
can actually interoperate towards achieving the wider goal of Ontology
interoperability between CL and the SW.

1 Introduction and Motivation

At the Panel Session during the Conceptual Structures Tools Interoperability
Workshop (CS-TIW) at ICCS 2008 (www.inra.fr/iccs08/workshops) one of us
(Polovina) expressed concern over the ongoing poor progress of Conceptual
Graphs (CG) software tools’ ability to interoperate with one another. It was
shown how interoperability could be progressed in a practical way through small-
scale exemplar projects such as an Ontology Importer for Amine [1]. One of the
key ensuing comments that if we wanted interoperability was for individuals
simply to do it for themselves. Also arising from the session was how CG tools
could interoperate with the Semantic Web (SW), reflecting the desires and de-
velopments towards this goal [8, 3]. Thus we had a spectrum from exploring
interoperability that ranged from a being a ‘cottage industry’ to globally inter-
operating CG tools with the Web itself.

In this larger view, CG is a key technology in the ISO Common Logic (CL)
standard (ISO/IEC 24707:2007)[4]. ISO CL propels ‘non-SW’ technologies like
CG (and their tools) from being disparate cottage industries into the global
arena of the SW. This arises from the fact that standards play a key part in
the adoption of any technology however promising that technology is. Standards
diminish the risk of being locked into a non-interoperable technology. Interop-
erability across standards offers any technology the most appropriate standard



for it to belong to whilst allowing it to be used with technologies in other stan-
dards according to their individual strengths. ISO CL accordingly offers the SW
a new and powerful dimension in achieving its aims of the effective discovery,
automation, integration, and reuse across applications, data and knowledge. In-
teroperating W3C’s SW recommendations with ISO CL offers the most lucrative
route in best realising these aims.

The ‘challenge’ of ‘doing it ourselves’ may nonetheless continue to offer a
worthwhile route in this larger endeavour. Given the previous experience of the
Amine Ontology Importer project referred to earlier, and in taking up this re-
mark, we present a further small-scale exemplar practical project. Namely we
investigated how an ontology produced in an emergent ISO CL software tool
can interoperate with a SW one through interoperating CG’s Amine software
(amine-platform.sourceforge.net) with the SW’s Protégé OWL (Web Ontology
Language) software (protege.stanford.edu).

2 CG and OWL

CG and OWL provide various layers of functionality for supporting ontologies.
CG are a way of structuring knowledge in a form readable by both humans
and computers. CG can be read in a graphical or linear manner [9]. CG are
constructed from Concepts, Relations and Arcs. Concepts consist of a type name
within a rectangle, they may also have a referent which refers to an individual
or instance of that type. Relations are shown as the relation type name within
a circle or ellipsis and refer to the relationship between the two concept types.
Arcs are shown as arrows between the concepts and the relations, the direction
of the arrow dictates which way the formal logic should be read. If the arrow is
directed towards the relation then the relationship will generally be ‘has a’, if
the arrow is directed away from the relation then the relationship will generally
be ‘which is/who is/is a’.

Thus [Concept-1] -> (Relation) -> [Concept-2] states that “Concept-
1 has a Relation which is a Concept-2”. [Cut] -> (Inst) -> [Knife] denotes
that “Cut has an Inst(rument) which is Knife”. (In CG is generally easier to start
the description with the relation, so for this example we would state that “The
Instrument of Cut is a Knife”.) An introduction to CG provides a description in
more detail including the use of referents [6].

In CG, an ontology is a hierarchy of Concept Types and Relations with Uni-
versal at the topmost super-type of all types and Absurd at the bottommost
subtype of all types; as such an ontology denotes a ‘catalogue of modes of exis-
tence’ [9], and the purpose of an ontology is to model knowledge in a formally
logical structure so that facts can be derived from it.

OWL is a SW technology (www.w3.org/TR/owl-features/) that uses Web
technologies, such as XML and Uniform Resource Identifiers (URI, www.ietf.org/rfc/rfc2396.txt)
which uniquely identify ontologies and elements within ontologies across the
Web. The OWL language is based on the SW’s XML/RDF Schema (www.w3.org/RDF).



OWL is a high level mark-up language that can easily read by humans as well
as computers in its raw form.

2.1 The Amine Suite.

The Amine CG platform provides an entire suite of applications aimed at creat-
ing complex intelligent systems. Amine ontologies allow the use of CG in their
structure both as ‘Definitions’ and ‘Canons’. The difference between a Canon and
a Definition is essentially that the former describes a good use of a CG whilst the
latter is a definition of a given Concept or a Relation, and examples distinguish-
ing the two can be found (e.g. www.huminf.aau.dk/cg/Module III/1152.html).
Canons and Definitions provide an invaluable and powerful basis to structure
a model of knowledge based on the CG ontology format described above. Each
of these nodes can contain a Canon or a Definition in the form of a CG which
relates to other nodes in the structure to form the inherent conceptual links
which the ontology carries. The Amine ontologies are stored as XML files, and it
is through parsing between Amine’s Ontology XML format and Protégé OWL’s
XML format that interoperability across the two ontology formats is explored.

2.2 Protégé OWL.

Protégé OWL is a platform which enables creation and manipulation of ontolo-
gies in the W3C’s OWL format. This platform provides an intuitive interface
enabling a graphical representation of an OWL ontology. It may include de-
scriptions of classes, properties and their instances that are used to build the
model of knowledge used to reason facts. There are three subsets of the OWL
language: OWL lite, OWL DL and OWL full. OWL DL was judged to be the
most appropriate level by which to investigate interoperability across the two
ontology formats as it supports Description Logic (The ‘DL’ in OWL DL), given
the previous correspondence between CG and DL [2]. In passing, OWL uses
URI to identify objects it allows inter ontology transfer of data over the Web,
a simple functionality that does not exist in the Amine platform at present but
could easily be implemented.

3 Mapping between Amine Ontology and Protégé OWL

We based our approach on JXML2OWL, a project using a Java XML DOM
parsing approach to migrate data from a standard XML data structure to the
OWL Web Ontology Language. However we used “LINQ To XML” parsing in
VB.NET to conduct the mappings [7, 5]. This choice capitalised on the particular
experience that one of us had (Cooke). We accordingly explored the pathways
between a Protégé OWL and Amine ontology, creating it in one of them and
testing the parsed ontology in the other. Our findings were as follows.



3.1 Amine Concepts to OWL Classes

Amine Concept Types. In Amine, concept types represent a type of a con-
cept. The concept types build up a hierarchy of concepts in Amine through their
children and fathers. For example, the following XML describes the concept type
‘City’, and its father (Universal):

OWL Classes. To construct the same hierarchy, OWL uses Classes, and the
subClassOf construct to define the Super-Class (or in Amine terms, the ‘father’).
For example, the following XML describes the classes Universal and City and
the hierarchy between them via the subClassOf construct:

Analysis. Concept types in Amine can be mapped across to OWL easily as
Classes, in addition the structure of the Concept Types can be translated using
OWL’s (or to be specific, RDFs) subClassOf feature. Using this simple map-
ping, the Amine ontology type hierarchy can be translated into an OWL file
and still maintain its Sub-Type/Super-Type structure, this file can then be
modified or expanded using the Protégé OWL Suite. This is achieved by pars-
ing the Amine XML and finding all of the <Type>.<Key> nodes. Then within
each node find all of the <Fathers>.<Father>.<Key> nodes. If there are no
<Fathers>.<Father>.<Key> nodes present in a <Type> node then there is no
subClassOf construct in the OWL XML, illustrated by Figure 1.

3.2 Amine Relation Types to OWL Properties

Amine Relation Types. In Conceptual Graph theory a relation type is a type
of relation which can contain a CG. Amine defines a Relation Type as a con-
ceptual structure which is always a subtype of the special ‘Relational Root’. In
line with CG theory, Amine allows a relational type to have a CG. For example,
the following XML is direct output from Amine and shows the definition of the
Relation Type ‘Agnt’ and that it’s Super-Type is ‘Relation’:



Fig. 1. Amine Concept to OWL Classes

OWL Properties. To construct the same hierarchy, OWL uses Properties, and
the subPropertyOf construct to define the Super-Class (or in Amine terms, the
“father”). For example, the following XML describes the Properties ‘Relation’
and ‘Agnt’ and the hierarchy between them via the subPropertyOf construct:

Analysis. An Amine ontology can include conceptual Relation Types, integrat-
ing a relational type hierarchy with the Concept Type hierarchy to capture the
relations between the concept types [9]. These can be mapped to OWL proper-
ties and using RDF’s subPropertyOf feature, enabling the Sub-Type/Super-type
structure of the type hierarchy to be maintained. These similarities lead us to
believe that there is a pathway to convert Amine Relation Types to OWL Prop-
erties through 2 stages:

1. Parse the XML to find the <RelationRoot> node and its value, then create
a OWL property with no domain or range as the root property.

2. Parse the XML and find all of the <RelationType>.<Key> nodes (except for
the Relation Root) then search within each of the <RelationType> nodes
(except for the Relation Root) for <Fathers>.<Father>.<Key> nodes then
writing the OWL ObjectProperty and subPropertyOf.



Figure 2 provides an example.

Fig. 2. Amine Relation Types to OWL Properties

3.3 Amine Individuals to OWL Individuals

Amine Individuals. In Amine, an individual is a specific member of a group.
For example, the following XML describes the Individual ’John’ and that he is
a member of the type ‘Person’:

OWL Individuals. To construct the same hierarchy OWL uses the coincidently
named Individuals, the definition of OWL Individuals is simpler than Classes and
Properties. For example:

Analysis. In an Amine ontology an individual is an instance of a concept type,
OWL also has individuals which are defined as instances of classes. Following our
mappings thus far this is a natural conversion. First we must parse the XML and
find all of the <Individual> nodes, for each node write the <Individual>.<key>



value as the Individual’s name thenWrite the <Individual>.<Fathers>.<Father>.<key>
value as the name of the class this individual belongs to. Figure 3 provides an
example.

Fig. 3. Amine Individuals to OWL Individuals

3.4 Amine CG to OWL mapping

So far we have proposed pathways/mappings to convert between an Amine on-
tology and Protégé OWL. However we noted that these mappings do not take
advantage of the expressiveness of CG and their use within Amine. Therefore
we lay out a method for translating CG in an Amine ontology to an appropriate
structure within an OWL ontology.

In an Amine ontology Concept Types and Relation Types have the capability
to contain both definitions and canons in the form of CG; these CG connect the
nodes together and define the relationships between them. Here a parallel can
be drawn with properties of OWL.

Figure 4 tabulates the mappings.

4 Binary Relations vs. n-adic Relations

Considering we have a larger more complex CG with many arcs we would break
them up into smaller, binary CG and model them as OWL properties one by
one. With the nature of the n-adic relations of CG and the Binary relations of
OWL it may not seem as simple for these two technologies to interoperate as this
paper implies. However using the pathways identified in this paper the complex
many arced CG are broken down into binary OWL Properties.

4.1 The n-adic Dimension

OWL properties along with their domain and range can be used to express a
dyadic relationship between individuals. However as CG may be n-adic we need
to employ Class Conditions in OWL in order lay out the logic as it appears in
CG. Using necessary asserted conditions we can map individuals, properties and



Fig. 4. Amine-OWL mappings

classes together and translate some of the model of knowledge contained within
the Amine ontology.

In order to achieve this we must first programmatically set the Domain and
Range of all of the Properties. This can only be done if the property (or in
Amine, the Relation) is used somewhere in the ontology. For example if we had
in a Amine ontology with the relation ‘Agnt’ but this relation was never used
in a CG, the computer would have no way to know what concepts it exists to
relate. For this reason we will assume that all of the Relation types in the Amine
ontology we are converting to OWL are referenced by a CG somewhere.

Let us take a CG from the previous example: [Go] -> (Inst) -> [Bus]

This CG is the Definition of the ‘Go’ concept in an Amine ontology, from this
CG we must get the Domain and Range for the “Inst” Property.

Domain. It is logical that the domain will be a Super-Type of the ‘Go’ Concept
Type, however there could be n-amount of Super-Types for the Concept Type
in question, its direct Super-Type could be ‘Action’, should this be the domain?,
the Super-Type of ‘Action’ could be ‘Movement’, should this be the domain? The
computer has no way of knowing what the correct Domain for a given Concept
Type should be with reference to creating an OWL Property, it is for this reason
that we have decided to use the direct Super-Type as it cannot be incorrect and
will be valid for other uses of the Concept Type. For example now that we have
established that the Domain of the property ‘Inst’ is ‘Action’ this domain will
still be valid when used in a CG like this: [Return] -> (Inst) -> [Bus] as
the Super-Type of ‘Return’ is also ‘Action’.



Range. The same can be said of the Range of the Property ‘Inst’ as if we use
the Super-Type of ‘Bus’ which is ‘Vehicle’, the property would still be valid for
a CG like this [Return] -> (Inst) -> [Car]. However this will cause an issue
if we encounter a CG like this: [Cut] -> (Inst) -> [Knife] as ‘Knife’ is not
a Sub-Type of ‘Vehicle’. It is for this reason that when the parser encounters
a scenario like this the Domain or Range (whichever caused the error) will be
‘pushed up’ from its existing hierarchical level to a level which will satisfy both
of the CG. For example if the above CG is encountered and causes a conflict, the
Range will be changed from ‘Vehicle’ to a concept type (or in OWL Class) which
is a Super-Type of ‘Car’, ‘Bus’ and ‘Knife’, in this case it would be ‘Entity’.

4.2 Class Restrictions

Now that we have established a method of getting the Domain and Range of the
for the OWL properties we can begin asserting conditions on the Classes based
on CG from the Amine Ontology.

To continue with our simple example: [Go] -> (Inst) -> [Bus] In order
to translate this knowledge ’The instrument of Go is Bus’ we need to use a
restriction on the ‘Go’ Class in the OWL ontology, this is because this statement
is changing the structure of the ‘Go’ Class. Programmatically this is decided by
which ever concept in the CG is logically read first.

When the parser reaches the point of asserting Class Conditions and it en-
counters a CG it will take the first logical concept, in this case ‘Go’ and add
an OWL Restriction. The onProperty attribute will set the property which re-
stricts the Class, in this case the ‘Inst’ Property. As the second relation in this
CG (‘Bus’) is a Concept and not an Individual, the construct someValuesFrom
is used to allow any Sub-Type of ‘Bus’ to be accepted as valid.

Figure 5 illustrates.

Fig. 5. Class restrictions

5 Levels of Conceptual Interoperability

We informally assessed the mappings according to the Levels of Conceptual In-
teroperability Model (LCIM) [10, 11]. We were pleased to detect that even within



this small-scale project LCIM level 3 (the semantic level) could be achieved, and
elements of level 4 (the pragmatic/dynamical level) may be present. In our view
Level 5 (the conceptual level, a common view of the world is established i.e.
a way to formalize the knowledge about a given domain) would not presently
be attained. For this we would turn to the larger-scale CL-SW interoperability
projects alluded to towards the beginning of this paper. But considering the
ambitious nature of such a small project, “3 1

2
out of 5 isn’t bad”.

6 Concluding Remarks

Through this practical exercise we have managed to demonstrate the actual
dimensions and extent of useful interoperability. Whilst originally taken in good
humour, ‘doing it yourself’ can nonetheless provide useful results and a context
and direction for larger scale projects. The success of our small ‘cottage industry’
project demonstrates that work in the interoperability arena is not as impossible
a task as it may seem. Ours indeed was a small but significant experiment that
provided a practical insight into how CG Tools can actually interoperate towards
achieving the wider goal of Ontology interoperability between CL and the SW.

References

1. Abdulrub, S., Polovina, S., Sandberg-Petersen, U. et al (2008).“Implementing inter-
operability through an ontology importer for Amine”. CS-TIW 2008 Proceedings,
Croitoru, M., Jäschke, R., and Rudolph, S. (eds.), Vol. 352. CEUR-WS, Germany
(2008), 1-6.

2. Coupey, P., Faron, C. (1998). “Towards correspondences between Conceptual
Graphs and Description Logics”, Conceptual Structures: Theory, Tools and Appli-
cations, Proceedings of the 6th International Conference on Conceptual Structures
(ICCS98), Montpellier, France, August 1012, Mugnier, M-L., Chein, M. (ed.), LNAI
1453, Springer, 165-178.

3. Corby, O. (2008). “Web, Graphs and Semantics”, Conceptual Structures: Knowl-
edge Visualization and Reasoning, Proceedings of the 16th International Conference
on Conceptual Structures (ICCS 2008), Toulouse, France, July 2008, Eckland, P.,
Haemmerlé, O. (ed.), LNAI 5113, Springer, 43-61.

4. Delugach, H. S. “Towards Conceptual Structures Interoperability Using Common
Logic” CS-TIW 2008 Proceedings, Croitoru, M., Jäschke, R., and Rudolph, S. (eds.),
Vol. 352. CEUR-WS, Germany (2008), 13-21.

5. Meijer, E., Beckman, B., Bierman, G. (2006). “LINQ: Reconciling Object, Relations
and XML in the .NET Framework”, SIGMOD ’06: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, ACM, 706-706.

6. Polovina, S. (2007). “An Introduction to Conceptual Graphs”, Proceedings of the
15th International Conference on Conceptual Structures (ICCS 2007), Conceptual
Structures: Knowledge Architectures for Smart Applications, July 2007, Sheffield,
UK, Priss, U., Polovina, S., Hill, R. (ed.), LNAI 4604, Springer, 1-15.

7. Rodrigues, T., Rosa, P., Cardoso, J. (2008). “Moving from Syntactic to Semantic
Organizations using JXML2OWL”. Computers in Industry, Volume 59, Issue 8,
808-819.



8. Rudolph, S., Krötzsch, M., Hitzler, P. (2007). “Quo Vadis, CS? - On the (non)-
Impact of Conceptual Structures on the Semantic Web”, Proceedings of the 15th
International Conference on Conceptual Structures (ICCS 2007), Conceptual Struc-
tures: Knowledge Architectures for Smart Applications, July 2007, Sheffield, UK,
Priss, U., Polovina, S., Hill, R. (ed.), LNAI 4604, Springer, 464-467.

9. Sowa, J. F., (1984). “Conceptual Structures: Information Processing in Mind and
Machine”, Addison-Wesley.

10. Tolk, Andreas, and Muguira, James, (2004). “The Levels of Conceptual Interop-
erability Model (LCIM)”. Fall Simulation Interoperability Workshop, Washington
D.C, April 2004.

11. Tolk, A., Turnitsa, C., Diallo, S. (2008). “Implied Ontological Representation
within the Levels of Conceptual Interoperability”. Intelligent Decision Technologies,
2, 3-19.


