

Service-Orientation and Object-Orientation: Complementary Design

Paradigms

Modern Software Development Series

Gary Stubbings BSc MBCS

Faculty of ACES

Sheffield Hallam University

Abstract

 Modern software development techniques evolve around the use of object-orientation

(OO). However, there is an increasing drive to develop applications using distinct services

that facilitate the reuse of already developed business processes through functions rather than

objects. This paper discusses the benefits and influence of these paradigms with respect to

how consideration should be placed on both when carrying out software design.

Programming Methods

 OO is a programming paradigm whereby state and behaviour are grouped together

into real-world artefacts. A core advantage of OOP over procedural programming techniques

is that it enables the encapsulation of behaviour within its structure. Service-oriented

architecture (SOA) is a development method whereby business processes are decomposed

into distinct modular units of work known as services. Although SOAs have a number of

characteristics the most significant is to achieve loose coupling among interacting software

agents in order to achieve non-platform dependant interoperability (Rosen, Lublinsky, Smith,

& Balcer, 2008). The advantage of this is that it enables connectivity to legacy systems

effectively facilitating the reuse of existing business processes.

There are many different schools of thought regarding the comparison of these methods,

however, less subjective practitioners consider them as independent approaches as they work

on different levels of abstraction to solve particular problems and can even both be used

within the same solution. Furthermore, Erl (2007) outlines that the principals and patterns

behind OO represent the significant sources of inspiration for SOA as many of the core

concepts such as encapsulation, reusability and abstraction can be traced back to their OO

counterparts.

A common distinction between these two paradigms considers that the OO is a style of

programming that does not describe software architecture whereas SOA pertains to both

software architecture and a business strategy through the use of technologies such as web

services. In recent years SOA and SO have managed to achieve mainstream status which is

mainly due to the emergence and successes of the web services framework (Erl, 2008).

Web services make functions available over standard internet protocols and although other

technologies such as remote services
1
 exist in distributed programming approaches it can be

argued that SOA offers more flexibility when it is built entirely with web services

(Manufacturing Business Technology, 2005). However, distributed computing approaches do

present their own advantages through an increase in performance and a focus towards well

defined OO principles whereby a clear modular structure is provided to enable support for

abstract data types and encapsulated implementation of logic behind clearly defined

interfaces.

1 OMG’s Common Object Request Broker Architecture (CORBA) and Microsoft's Distributed Component Object Model (DCOM).

Current Approaches

 One of the biggest problems in software development is that it is difficult to choose

the best approach when both business requirements and technology are continuously

changing. Marks (2008) suggests that the primary purpose of SOA within a business

environment is as a means of connectivity rather than replacement of technology as it

promotes the alignment of both requirements and technology by exposing existing

functionality and enabling the development of independent services in response to specific

business needs.

Decomposition is the simplest approach to extending OO systems whereby existing

functionality is exposed as a set of services for reuse in other parts of the business (Koskela,

Rahikainen, & Wan, 2007). Through a combination of approaches SOA and OO can enable

the orchestration of requirements without needing to worry about platform, however, the

effectiveness of this is often dependent on how well defined the existing layers of abstraction

are and even when successful is often criticised for increasing complexity. This is particularly

true when it is deemed necessary to encapsulate security and provide state for partners

through the use of application programming interfaces (APIs).

A typical approach for SOA introduces a new layer of abstraction that enables new and

existing OO systems to be integrated into the business through an Enterprise Service Bus

(ESB). The role of an ESB is to act as a universal connectivity middleware solution which

enhances communication and simplifies integration (Rosen, Lublinsky, Smith, & Balcer,

2008). ESBs are a popular business solution due to their ability to retain existing investment

in resources whilst providing additional tools
2
 for interaction with other business processes.

Complementary Paradigms

 It is common concern that SOA is a difficult approach due to its complexity and each

solution having its own unique requirements. However, as well as service frameworks a

number of OO adopted concepts can also be used to address these issues. In some cases SOA

solutions make use of APIs or provide data service layers (DSL) in order to address

difficulties associated with service implementation and provide support for OO principals

such as handling persistence and providing state for object-relational mapping (ORM)
3
.

2 Such as that of Business Process Execution Languages (BPEL).

3 A tool for linking objects to data sources enabling real-time transactions.

ORM technologies such as that of Hibernate (Hibernate, 2009) support the ability to modify

values in memory using OO constructs which directly communicate updates to data sources.

Typically this functionality goes unutilised in SOA due to its stateless behaviour and can only

be achieved by passing the persistence to a dedicated layer. A number of practitioners that

follow this method of development begin to see the advantages from both paradigms,

however, though lack of standards and methodology this approach is not without challenges

and presents new complexities such as service to object mapping.

Although it is clear that SOA is not a solution for every challenge, Marks (Marks, 2008)

suggests that SOA offers a great deal of business value when applied to the right area such as

through the use of external services as support mechanisms for connectivity to suppliers and

partners’. This kind of service often serves to save time in development and provide seamless

transactions between different companies in multiple locations whilst reducing the amount of

resources required by moving focus away from new development and more towards service

integration.

The integration of services into OO systems is becoming more common and although this is

no new concept it can be argued that market trend has moved towards a greater use of

external services in line with the advancement of telecommunication capabilities. However, a

common problem in existing OO systems is that service integration is seldom considered in

the OO design stages.

Object-Orientation’s Contribution to Service-Orientation

 It can be argued that much of what seems to be modern innovation is actually the

rediscovery of existing approaches and as a result of previous software development many of

the benefits of SOA have already been addressed (Zdun, 2008). All of these existing

methodologies underpin the need to consider software development and reusability on

different levels by focusing upon the layers of abstraction within SOA, however, it could be

considered that this focus should not only include SO but OO as well in order to help

modernise the basic concepts from which others are built.

SOA is often considered an evolution of OO as it shows hereditary concepts such as

abstraction which is exhibited through strict service separation as well as encapsulation of

implementation detail (Erl, 2008). Although both paradigms adhere to different programming

models OO analysis is often used to develop semantic models. A business perspective

considers that SOA evolved from OO to address a new problem in the industry and to adapt

to current technology (Koskela, Rahikainen, & Wan, 2007); however, it can be argued that in

fact SO and OO complement each other to support SOA and that despite their differences SO

still retains many of the original advantages of OO in contrast to earlier development

methods.

Contrast between Object-Orientation and Service-Orientation

 Fundamentally, in OO the objects are aware of each other’s existence and are

intelligent in that they actively work together to complete business tasks. As a result OO is

often used for building the internals of applications while SO encourages a combination of a

number of external services where functionality is decoupled and interaction is relatively

straightforward.

Although SO and OO have many of the same concepts such as association and granularity it

is clear that they also have their own unique aspects and methods of handling remote

invocation and as a result it can be argued that the context in which these principles are used

is somewhat different (See Table 1).

Contrast Object Orientation Service Orientation

Concepts Modelling, Architectural

Design, Programming

Modelling, Architectural

Design

Exposure Methods

Services

Focus Component-level

Business-level

Communication Primarily internal

Internal and external

(Interoperable)

Standards Extensive standards with high

maturity

No standards for specific

design patterns

Complexity

Medium to high with a more

controlled environment

High, specifically where there

is little control over

technology

Table 1 – A contrast between OO and SO

Although these two paradigms can be used alongside each other to develop semantic models

it can be argued that most of the existing approaches and frameworks show a clear separation

of these paradigms whereby focus is placed on either one or the other and rarely the two

together.

Existing Patterns and Approaches

 A number of frameworks and standards for services have emerged from the evolution

of software practices. Decision modelling is an approach adopted from software engineering

concepts which has led to the development of SOAD (SOA Decision Modelling), a set of

concepts and RADM (Reusable Architectural Decision Model), a set of recurring decisions

for SOA (Zimmerm, 500 Recurring Decisions for SOA, 2009). However, although these

frameworks help with the identification of business requirements it can be argued that they

are too generalised and will not fit every solution.

As well as these techniques the IT Infrastructure Language (ITIL) provides an extensive set

of concepts and best practices for service management (OGC ITIL, 2008), nevertheless,

although it is clear that ITIL has many advantages it can be argued that the approach is more

focused towards IT management and that through its use many businesses end up missing

pragmatic solutions. This is underpinned by many implementers accusing ITIL as over-

complicating requirements where simple solutions are available.

A number of patterns that are based on software engineering approaches such as that of

command (Gamma, Helm, Johnson, & Vlissides, 1994) and object system layer (Goedicke,

Neumann, & Zdun, 2001) provide structure through standards for development and are

commonly used to resolve complexities found in the integration process. However, existing

studies such as that of Yang et al. (Yang & Papazoglou, 2004) argues that these approaches

are somewhat lacking for service composition and in later works (Papazoglou & Heuvel,

2007) unifies these principles and concepts to promote an approach for extending

conventional SOA approaches.

Future Consideration

 Evidence shows that both paradigms have a place in modern system development,

however, it can be argued that because of an enterprise-centric perspective which focuses

more towards business and management needs only a subset of OO principles exist within

SO. This perspective has arguably shaped SOA into a business solution with focus on what is

happening right now as opposed to what might happen tomorrow. Further investigation could

outline more detail regarding the relationship between OO and SO with focus towards

identifying a cross-section of their distinct advantages and the origins of their principles.

A number of practitioners believe that OO still remains the most suitable option for designing

application components (Dori, 2007) and that through experience OO along with its ensuing

practices
4
 still has much to offer SO. Related studies outline that software engineering

techniques traditionally used for OO still have many approaches that could be adapted for use

in service development and as a result it can be argued that the exploration of existing and

standardised approaches with consideration of these two paradigms together rather than

separately could lead to the development of a simpler integration method that supports

service ready object-oriented systems.

References

 Dori, D. (2007). SOA for services or UML for objects: Reconciliation of the battle of

giants with Object-Process Methodology. International Conference on Software – Science,

Technology and Engineering.

Erl, T. (2008). Service-Orientation and Object-Orientation: A Comparison of Design

Principles. SOA Magazine (XVI).

Erl, T. (2007). SOA Principles of Service Design. Prentice Hall.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley.

Goedicke, M., Neumann, G., & Zdun, U. (2001). Object system layer. Pattern Languages of

Programs. Irsee.

Hibernate. (2009). Relational Persistence for Java and .NET. Retrieved 2 21, 2010, from

Hibernate: https://www.hibernate.org/

Koskela, M., Rahikainen, M., & Wan, T. (2007). Software development methods: SOA vs.

CBD, OO and AOP. Helsinki University of Technology.

Manufacturing Business Technology. (2005). BEA showcases new SOA platform in China.

Manufacturing Business Technology , 23 (2), 49-49.

Marks, E. A. (2008). Service-Oriented Architecture (SOA) Governance for the Services

Driven Enterprise: Business, IT, and Funding for the Evolving Business. John Wiley & Sons .

OGC ITIL. (2008). Service Strategies.

4 Such as Design Patterns, Component-Based Development and Aspect-Oriented Programming.

Papazoglou, M. P., & Heuvel, W.-J. v. (2007). Service oriented architectures: approaches,

technologies. The VLDB Journal , 389 – 415.

Rosen, M., Lublinsky, B., Smith, K. T., & Balcer, M. J. (2008). Applied SOA: Service-

Oriented Architecture and Design Strategies. Wiley.

Yang, J., & Papazoglou, M. P. (2004). Service components for managing the life-cycle of

service compositions. Inf. Syst. , pp. 97 – 125.

Zdun, U. (2008). Pattern-Based Design of a Service-Oriented Middleware for Remote Object

Federations. ACM Trans. Intern. Tech , 8 (3).

Zdun, U. (2006). Patterns of component and language integration. Pattern Languages of

Program Design .

Zimmerm, O. (2009). 500 Recurring Decisions for SOA. Retrieved 11 2009, from

http://soadecisions.org/soad.htm

