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Abstract

Traditionally credit scoring systems have aimedrdduce the risk in a lender’s portfolio by predigtiwhether a
customer would default on their account. Howeviee, turrent models offer limited depth, as they ambg binary
outcomes. It has been suggested that by utilisiniiple outcomes more predictive models could bmdpced. This
paper investigates the use of multiple-outcomestigiregression models in the context of creditrisgp These
multiple-outcome models are then compared to arpitwgistic model; a widely used model in the ctaddustry, to
offer a comparison in discriminatory power. Finale paper discusses the impact that multiple eoécmodels would
have if implemented into a credit scoring solution.

1. Introduction

Mester (1997) describes credit scoring as “a sissismethod used to predict the probability thftredit] applicant or
existing borrower will default or become delinquenBy utilising credit scoring lenders are ablerggect applicants
who are likely to default or become delinquentoPto the advent of automated systems, lendersdumake decisions
on an application-by-application basis. A smalinteaf credit analysts would process all of the aggilons manually
leading to inconsistencies in the lending decisidits resolve this problem some mail-order compamé®duced

numerical scoring systems. With the start of Wanar Il all of the credit lenders began to expereeddficulties with

credit management, as credit analysts were beiafgedrinto military service. As there was a shagtaf experienced
credit analysts, lenders had their analysts wrird the rules that they used to decide upon anicgtls credit

worthiness. Non-experts could then use these taléslp make lending decisions. After the war pedptgan to
connect the classification techniques being dewopy statisticians and the automation of lendiregigions

(Wonderlic, 1952). The connections being made iattilme led to the formation of the first creditnsultancy: Fair
Isaac, in 1956.

Traditionally, credit scoring has used statistiv@thods such as discriminant analysis, and maerllathe more robust
logistic regression (Thomas et al, 2002). Hand &l (1997) discuss the merits of various statistinethods that
can be used to model credit data. When lookindhatuse of linear regression Hand & Henley makeptbiat that

although logistic regression appears to be moratslei for use in a two class situation such as findegoods and
bads it is no better than linear regression asge lproportion of the applicants have estimatedalbdities of good

between 0.2 and 0.8. In this case the logisticeis\approximated by a straight line making linesgression suitable.
More recently research into the field of creditrdeg has focused more on the use of data miningnigoes to classify
customers. Chye, Chin & Peng (2004) detail the afse variety of data mining techniques that carubed for the
classification of customers, such as decision ta®b neural networks. Although many of the techesqused to
classify credit applicants are capable of modellimgye than two categories, credit scoring is nolyr@inducted using
only two categories. The aim of this paper is teestigate the use of multiple outcome logistic esgion techniques,
and appraise their use in the credit scoring inglust

2. Data

The data used for the analysis comprised 12000caop for a fixed term loan and contained 10 exgiary variables
and an outcome flag.

Table 1, below, shows the number of applicantsfidbinto each of the 3 classifications.

Frequency Percent
Good 10000 83.33
Bad 1000 8.33
Early Payer 1000 8.33

Table 1: Freguency of classification

The data were a mixture of application and perfarteacharacteristics. The characteristics suppliece as follows:
Time at Bank (Months), Time at Address (Months),arlal Status, Total Number of Accounts (Last 6 M),
Number of Credit Searches (Last 3 Months), Age pplicant, Number of Defaults, Time Since Most Rédgaunty
Court Judgement (CCJ), Demographic Index and Credik Score. Where possible the variables were wsed
continuous variables. However due to the naturesarhe of the variables they needed to be bandeddistyete
categories. Firstly, Number of defaults was recoidéal three groups: 0, 1 and 2+, this was becduse twere so few
applicants with high numbers of defaulted accouiecondly, Time Since Most Recent CCJ was recodel lanary
flag; CCJ vs No CCJ. This was again because dbtienumber of applicants who had this derogatotada



3. Binary Logistic Regression
a. Methodology

The binary logistic regression model will be ussdaacontrol model so that any uplift produced kg dise of multiple
outcomes can be seen. As logistic regression ig tssenodel a binary response (Jones and Kilner7200e would
anticipate that the number of customers that aeengéd to be ‘bad’ customers, as detailed in se@jomould follow a
binomial distribution,

Yi ~ B(ni T )

Wherey; represents the observed number of subjects, whe &aalue ok for the factor of interest, who have been
classified as ‘bad’ customers.i;:ithe number of customers in the sample with aevalfx for the factors; represents
the underlying true probability that a customethia sample is a ‘bad’ customer. If we were to fihadel withz as the
response, the model would need to be constraingdltes oft between 0 and 1. To achieve this, we first comdiade
odds ratiosi/(1 - m). It can be seen that aapproaches zero, the odds ratio also approachesvailst ast approaches
1, the odds ratio approaches infinity. We now cd@sthe log odds ratio, also known as the logfstnction:

= loal -*—|. 3.1
o) o

As nt approaches zero the odds ratio also approachesszer approaches negative infinity. Asapproaches 1 the odds
ratio approaches infinity such thatalso approaches infinity.

By exponentiating equation 3.1 we get:

e'= (3.2)
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by rearrangement it can be shown that:
e’l

T= re (3.3)

Equation 3.3 is known as the inverse logistic fiorctNotice that ag approaches negative infinity approaches zero,
and as a result; approaches zero. Asapproaches infinity"eapproaches infinity, such thatapproaches 1. Therefore,
regardless of the value that the logistic functigntakes, the corresponding probability,must lie between 0 and 1.
Collett (2003) shows that the logistic function d@nmodelled by a linear function xf known as the linear predictor.

= Bot BiXyt .ot BiX. (3.4)

Thep terms in equation 3.4 can be estimated by maxitiketihood and can be interpreted as the additifeceon the
log odds ratio for a unit change in tfile explanatory variable.

b. Analysis

Prior to beginning the analysis the response virials dichotomised to a binary response of ‘Gaod ‘Bad or Early
Payer’. The first stage of the modelling process teebuild single term models using each of thdanatory variables.
This would allow for any insignificant variablesibe removed from the latter stages of the analpdii®f the variables
were found to be significant at the 5% level. Allitioe terms were than passed to stepwise modgiliagedures, with
entry and exit parameters of 0.05. Interaction tebmatween each of the remaining variables were #oeled to the
model, and stepwise regression was repeated. Tlé fiodel inclused the terms: Time at bank, Timeddress,
Marital status, Number of credit searches, Agedfnésk score and the interaction term betweenitalastatus and
number of credit searches.

4. Proportional Odds Model
a. Methodology

Agresti (2002) details that the proportional oddsdel utilises the ordinality of a response varialled in doing so
improves model parsimony and power, over binary eldCumulative probabilities can be used to e)pties order of
the categories,

P(Y < jIx)=z,(x)+..+ T (x), (4.1)

wherej is the response category, gnet 1, . . . J, andx is a factor of interest.



The cumulative probabilities shown in expressiofh 4an then be expressed as cumulative logits, etbfias:

ogilp(y < 1)< og; =1,

71'1(X)+ T (X) (4-2)

7Tj+1(x)+ SO (X) ’

wherej =1, ... J—1 and each of the cumulative logits used adisponse categories. The proportional odds medel i
model that uses all of the cumulative logits simuétously. The model can be given by:

=log

logitP(Y < j|x)|= &, + £'x, (4.3)
wherej=1,...J-1.

Each of the cumulative logits has its own interceptAs the value of increases, so does the valuexafs P(Y<j | X)
increases in for a fixed value of x. Each of the logits incluthe termp” to represent the parameters for each of the
explanatory variables. The inclusion of fhiethem in expression 4.3 constrains the 1 response curves to have the
same shape. The fit of this model is not the sasrfétang separate logit

models for each

logit[P(Y < j|x,)] - logit[P(Y < j|x,)]

_tog P S 11)/P(Y> j1)
P(Y < j1%,)/P(Y> j|x,)

:ﬁ' (X1 _Xz)-

The cumulative odds ratio; the odds ratio for clative probabilities, for a responsg atx = x; is expP'(x; — X2)]
times the odds at = x,. This property gave the model its name, as theclogulative odds ratio is proportional to the
distance betweexy andx,; shown in expression 4.4. If each of the explaryatariables cannot satisfy this property, the
model is said to violate the proportional odds aeg#tion thus invalidating the model.

(4.4)

b. Analysis

Before any analysis could be conducted the scatddethe proportional odds assumption needecetodsried out for
each of the explanatory variables. This test wahildw which of the variables met the assumptionsosag be the
model. After conducting the test for each of theialdes it emerged that seven of the 10 variabletated the
proportional odds assumption. This demonstratetittieause of the proportional odds model would btviable for
these data.

5. Partial Proportional Odds Model
a. Methodology

The partial proportional odds model is similar be fproportional odds model, in that it uses 1 cumulative logits
simultaneously to model outcomes. However, rather than constraining athefparameters to be the same across all
logits, it allows the variables that violate theportional odds assumption to have differing patanse The variables
that do meet the proportional odds assumption tdfeanstrained as in the proportional odds model.stated above,
the partial proportional odds model uses cumulgtiababilities;

P(Y < ] |x)= nl(X)+ Lt (x)

to express the ordinality of the data. As with bk proportional odds model these cumulative ptilites can be
expressed as a setbf 1 cumulative logits,

logitP(Y < j | x)|= m%
7y (X)+ ...+ 7, (x)
T (X)+ oty (X))

The partial proportional odds model differs frone flall proportional odds model in that it allowstharameters of the
covariates that do not meet the proportional odgdsmption to vary across the different logits, @ltibnstraining those
that do meet the proportional odds assumption tihdsame. Where the full proportional odds moalets$ the form:

logitP(Y < j|x)|= a, + £'x,

=log



Stokes, Davis and Koch (2000) show that the pastiaportional odds model, instead, takes the form:
logit[P(Y < j [X)|= a; + X, + ByXp.  (B.D)

Where x;; are the explanatory variables that meet the ptmp@ odds assumption, arfil; are the parameters
associated with these variabl&g.are the explanatory variables that do not meeptbportional odds assumption, and
B’y are the parameters associated with these vesidbitdike thep’;s, thep’ ;s can be different for each valuejof

b. Analysis

Stokes, Davis and Koch (2000) detail the procesditiing the partial proportional odds model in SAas it is not
directly available. The method approximates therescest for the proportional odds assumption by et
interaction terms between each logit and eachegtplanatory variables. The results of this mathelwed that five
of the 10 explanatory variables do not meet th@@rional odds assumption. The logit interactiforsthese variables
are retained in the model for the remaining analy&ipseudo-stepwise procedure was then condueteehtove the
insignificant terms from the model. The variablesnaining in the final model were Time at bank, Tiateaddress,
Number of credit searches, Marital status, Totghber of accounts, Age, Demographic Index and iCris#t score.

6. Baseline-Category Logit Model

a. Methodology
If Yis a categorical response wilhcategories, a baseline-category logit model viifiudtaneously describe the log
odds for all(i) pairs of categories. However, all kit 1 of these pairs are redundant.

Letmj(x) = P(Y<j | x) at a fixed value ok for explanatory variables, withrj(x) = 1. For observations whekex we
can treat the counts for each of theategories o¥ as multinomial with probabilitiesd(x), . . . ,m3(X)}
A baseline category is often paired with each raspaategory in logit models. The model;

T (X)

| = qa. ' .
Ogn'J(X) 0£J+ﬁJX, (6.1)

simultaneously describes the effectsxafn thed — 1 logits, wher¢ = 1, . . . J— 1. The effects vary according to the
response level paired with the baseline. Thesel equations determine the parameters for theslo§the other pairs
of response categories, as;

»(X)

) )
(0 %, (0 %%, ()

The equation used to express a multinomial logitl@hosuch as the baseline-category logit modeteims of the
response probability, (X) is;

_ ex;{aj + B X)
i (x)= 1+ Zﬂp‘llexp(ah + ﬂ;]x)’

with a3 = 0 andB; = 0. This follows from equation 6.1, in the fdeat equation 6.1 also holds wijtlk J by settings; = 0
andp; = 0.

In situations wherd = 2 equation 6.3 simplifies to the equation farasy logistic regression,
expa+ pXx
ﬂ(x) = M , (6.4)
1+ expla+ fx)

which is equivalent to equation 3.3.

(6.2)

(6.3)

b. Analysis
The modelling process for the baseline-categorit lngdel followed a similar process to the binasgiktic regression.

Firstly, single term models were used to identiffich of the variables were likely to be significantany further

modelling. All of the variables were found to bgrsficant, at the 5% level, in at least one of khgits at this stage so
none of the variables were removed from furthelymma Stepwise selection was then performed orvéinmbles with

entry and exit parameters of 0.05. Interaction tebetween each of the variables were then addi tmodel, and the
stepwise selection was repeated. The final modadisted of the terms: Time at bank, Marital Stalietal number of

accounts, Age and Credit risk score.



7. Measures of Association

The measures of association that have been cadduledm the concordance analysis are: the concoedantlex €),
Somers' D, Godman-Kruskal Gamma and Kendall's Tatha journalNature (Concordance Index, 2008) defines the
concordance index, as “the proportion of subject pairs in which thibject with the higher true response also has the
higher predicted response”, and also statesdh®s a range from 0.5; representing no discrimgaébility, to 1;
perfect discrimination. For a binary outcome, tlomaprdance index is an approximation to the areteuthe ROC
curve. The SAS support articlRank Correlation of Observed Responses and Prebietebabilities (2008)defines
Somers’ D as the difference between the numbemntardant and discordant pairs divided by the totahber of
pairs, and as such penalises for the presencesofS8bmers’ D has a range from 0 to 1, 1 beingpediscrimination.

Goodman-Kruskal Gamma is similar to Somers’ D, hiattit is a ratio of the difference between the bhamof
concordant and discordant pairs, and the total murabpairs. However, Goodman-Kruskal Gamma doégpanalise
for tied pairs in the computation. When there avetias Goodman-Kruskal Gamma is synonymous with &ehb.
Preston (2006) details the use of Kendall's Talitee measure is described as a ratio of the difterdretween the
number of concordant and discordant pairs. Althougther than being divided by the total numbeicahcordant,
discordant or tied pairs, is divided by the numtfeatl pairs in the sample.

8. Results

After conducting the analysis using each of the efllody techniques, it was found that all of the ralsdhad a poor
predictive power. This was due to the fact that thadsthe applicants had predicted probabilitiesgobd over 0.5.
However, if the resultant models were to be use@ asedit risk tool, the score would not be usedl&ssify the
applicants directly, being used instead to rankctigomers; any applicant achieving a score owgven cut-off would
be accepted; being deemed a probable good. Becdube way that the final model would be used, aokr the
customers in term of risk, a concordance analysishe performed on the predicted probabilitiesaaheof the models.
The concordance analysis will allow for the delivatof several measures of association, which sttmvmodels
ability to rank the applicants according to theiolwn classifications.

Binary Partial Baseline-
Logistic ~ Proportional Category

Regression Odds Model Logit Model

C 0.6957 0.7156 0.7210
Somers’D  0.3914 0.4313 0.4421
Gamma 0.3914 0.4313 0.4421
Tau-a 0.1087 0.1257 0.1289

Table 2: Measures of Association

Table 2 shows the measures of association for efttte models. The concordance index shows thag tiseat least a
0.2 increase in the number of concordant pairgr atljusting for ties, between the binary logistiodel and the
multiple outcome models. The values of Somers' B @amma confirm that the multiple outcome modelgehan

increased discriminatory power over the binary dtigi regression model. Agresti (2002) details thtlising the

ordinality of a response variable can improve mgaesimony and power when compared to binary mo@ele to the
limitations in the data this research cannot camfigresti's research, however, it does show thaltiph@ outcome

logistic regression models have a greater discatony power than binary logistic models when usethe context of
credit scoring.

9. Conclusions

By utilising a model that has a higher discrimimgtpower a lender will be able to reduce the bad o&their book: the
number of accepted customers that become bad fery esustomer accepted. The simplest interpretatibihis
understanding is that fewer potentially bad custsnage accepted and as bad customers lead toreifihéoss for the
lender, the lenders losses are reduced. In themuinancial climate it is important for lendecsghow that their books
do not represent too large a risk. Additionally,iblyoducing the concept of a multiple outcome #oluto the lending
decision, lenders would be able to tailor the tehscceptance for each of the different prediatettomes; for
instance, ensuring that customers who are likelgay off their credit early face higher penalty iges for this early
repayment. Due to the fact that all of the model®stigated use the same set of explanatory vadatiiere will only
ever be a limited scope to improving the discrirtong power of the model. Although this research $fagwn that the
use of multiple outcome logistic regression modiedsl to a more discriminatory model, there are iséwhortcomings
to the analysis that prevent a concrete recommimdftom being made. Firstly, the Proportional Odazdel, and less
so the Partial Proportional Odds Model, are onliidvd the outcome is truly ordinal. Secondly, aff the models
assume that the outcomes are mutually exclusithoAgh in this case it is reasonable to assumehbatutcomes, at a
fixed point in time, are mutually exclusive, in ettcases, however, this may not be the case.



To fully investigate the use of multiple outcom@jikiic regression models it is recommended thatenaoralysis be
conducted on a range of datasets, each containttiffeaent set of outcomes. Also, the use of swalianalysis, in
particular competing risks models, could be usedstess how the risk of one of the outcomes ooguatianges over
time.
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